625 research outputs found

    On Multivariate Records from Random Vectors with Independent Components

    Get PDF
    Let X1,X2,\boldsymbol{X}_1,\boldsymbol{X}_2,\dots be independent copies of a random vector X\boldsymbol{X} with values in Rd\mathbb{R}^d and with a continuous distribution function. The random vector Xn\boldsymbol{X}_n is a complete record, if each of its components is a record. As we require X\boldsymbol{X} to have independent components, crucial results for univariate records clearly carry over. But there are substantial differences as well: While there are infinitely many records in case d=1d=1, there occur only finitely many in the series if d2d\geq 2. Consequently, there is a terminal complete record with probability one. We compute the distribution of the random total number of complete records and investigate the distribution of the terminal record. For complete records, the sequence of waiting times forms a Markov chain, but differently from the univariate case, now the state infinity is an absorbing element of the state space

    Some Results on Joint Record Events

    Get PDF
    Let X1,X2,X_1,X_2,\dots be independent and identically distributed random variables on the real line with a joint continuous distribution function FF. The stochastic behavior of the sequence of subsequent records is well known. Alternatively to that, we investigate the stochastic behavior of arbitrary Xj,Xk,j<kX_j,X_k,j<k, under the condition that they are records, without knowing their orders in the sequence of records. The results are completely different. In particular it turns out that the distribution of XkX_k, being a record, is not affected by the additional knowledge that XjX_j is a record as well. On the contrary, the distribution of XjX_j, being a record, is affected by the additional knowledge that XkX_k is a record as well. If FF has a density, then the gain of this additional information, measured by the corresponding Kullback-Leibler distance, is j/kj/k, independent of FF. We derive the limiting joint distribution of two records, which is not a bivariate extreme value distribution. We extend this result to the case of three records. In a special case we also derive the limiting joint distribution of increments among records

    Statistical Modeling of Spatial Extremes

    Get PDF
    The areal modeling of the extremes of a natural process such as rainfall or temperature is important in environmental statistics; for example, understanding extreme areal rainfall is crucial in flood protection. This article reviews recent progress in the statistical modeling of spatial extremes, starting with sketches of the necessary elements of extreme value statistics and geostatistics. The main types of statistical models thus far proposed, based on latent variables, on copulas and on spatial max-stable processes, are described and then are compared by application to a data set on rainfall in Switzerland. Whereas latent variable modeling allows a better fit to marginal distributions, it fits the joint distributions of extremes poorly, so appropriately-chosen copula or max-stable models seem essential for successful spatial modeling of extremes.Comment: Published in at http://dx.doi.org/10.1214/11-STS376 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Rejoinder to "Statistical Modeling of Spatial Extremes"

    Full text link
    Rejoinder to "Statistical Modeling of Spatial Extremes" by A. C. Davison, S. A. Padoan and M. Ribatet [arXiv:1208.3378].Comment: Published in at http://dx.doi.org/10.1214/12-STS376REJ the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials

    Full text link
    Many applications in risk analysis, especially in environmental sciences, require the estimation of the dependence among multivariate maxima. A way to do this is by inferring the Pickands dependence function of the underlying extreme-value copula. A nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of a specific type of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated by analyzing clusters consisting of seven weather stations that have recorded weekly maxima of hourly rainfall in France from 1993 to 2011

    Shock fragmentation model for gravitational collapse

    Full text link
    A cloud of gas collapsing under gravity will fragment. We present a new theory for this process, in which layers shocked gas fragment due to their gravitational instability. Our model explains why angular momentum does not inhibit the collapse process. The theory predicts that the fragmentation process produces objects which are significantly smaller than most stars, implying that accretion onto the fragments plays an essential role in determining the initial masses of stars. This prediction is also consistent with the hypothesis that planets can be produced by gravitational collapse.Comment: 22 pages, 3 figure

    Simulating Supersonic Turbulence in Magnetized Molecular Clouds

    Full text link
    We present results of large-scale three-dimensional simulations of weakly magnetized supersonic turbulence at grid resolutions up to 1024^3 cells. Our numerical experiments are carried out with the Piecewise Parabolic Method on a Local Stencil and assume an isothermal equation of state. The turbulence is driven by a large-scale isotropic solenoidal force in a periodic computational domain and fully develops in a few flow crossing times. We then evolve the flow for a number of flow crossing times and analyze various statistical properties of the saturated turbulent state. We show that the energy transfer rate in the inertial range of scales is surprisingly close to a constant, indicating that Kolmogorov's phenomenology for incompressible turbulence can be extended to magnetized supersonic flows. We also discuss numerical dissipation effects and convergence of different turbulence diagnostics as grid resolution refines from 256^3 to 1024^3 cells.Comment: 10 pages, 3 figures, to appear in the proceedings of the DOE/SciDAC 2009 conferenc

    Structure Function Scaling in Compressible Super-Alfvenic MHD Turbulence

    Full text link
    Supersonic turbulent flows of magnetized gas are believed to play an important role in the dynamics of star-forming clouds in galaxies. Understanding statistical properties of such flows is crucial for developing a theory of star formation. In this letter we propose a unified approach for obtaining the velocity scaling in compressible and super--Alfv\'{e}nic turbulence, valid for arbitrary sonic Mach number, \ms. We demonstrate with numerical simulations that the scaling can be described with the She--L\'{e}v\^{e}que formalism, where only one parameter, interpreted as the Hausdorff dimension of the most intense dissipative structures, needs to be varied as a function of \ms. Our results thus provide a method for obtaining the velocity scaling in interstellar clouds once their Mach numbers have been inferred from observations.Comment: published in Physical Review Letter

    Structure Function Scaling of a 2MASS Extinction Map of Taurus

    Get PDF
    We compute the structure function scaling of a 2MASS extinction map of the Taurus molecular cloud complex. The scaling exponents of the structure functions of the extinction map follow the Boldyrev's velocity structure function scaling of supersonic turbulence. This confirms our previous result based on a spectral map of 13CO J=1-0 covering the same region and suggests that supersonic turbulence is important in the fragmentation of this star--forming cloud.Comment: submitted to Ap

    The Statistics of Supersonic Isothermal Turbulence

    Full text link
    We present results of large-scale three-dimensional simulations of supersonic Euler turbulence with the piecewise parabolic method and multiple grid resolutions up to 2048^3 points. Our numerical experiments describe non-magnetized driven turbulent flows with an isothermal equation of state and an rms Mach number of 6. We discuss numerical resolution issues and demonstrate convergence, in a statistical sense, of the inertial range dynamics in simulations on grids larger than 512^3 points. The simulations allowed us to measure the absolute velocity scaling exponents for the first time. The inertial range velocity scaling in this strongly compressible regime deviates substantially from the incompressible Kolmogorov laws. The slope of the velocity power spectrum, for instance, is -1.95 compared to -5/3 in the incompressible case. The exponent of the third-order velocity structure function is 1.28, while in incompressible turbulence it is known to be unity. We propose a natural extension of Kolmogorov's phenomenology that takes into account compressibility by mixing the velocity and density statistics and preserves the Kolmogorov scaling of the power spectrum and structure functions of the density-weighted velocity v=\rho^{1/3}u. The low-order statistics of v appear to be invariant with respect to changes in the Mach number. For instance, at Mach 6 the slope of the power spectrum of v is -1.69, and the exponent of the third-order structure function of v is unity. We also directly measure the mass dimension of the "fractal" density distribution in the inertial subrange, D_m = 2.4, which is similar to the observed fractal dimension of molecular clouds and agrees well with the cascade phenomenology.Comment: 15 pages, 19 figures, ApJ v665, n2, 200
    corecore